Sunčev sistem Galaksija Meteori Asteroidi Verovanja Zanimljivosti
Rečnik Vesti Arhiva Linkovi Download Kontakt

Neutronske zvezde


Otkriće

Postojanje neutronskih zvezda u teoriji je predviđeno manje od godinu dana nakon otkrića neutrona 1932. godine. Ruski fizičar Lav Landau je predvideo da u kosmosu mogu da postoje zvezde koje se sastoje isključivo od neutrona. Međutim, kako detektovati takvu zvezdu? Godine 1967. Jocelyn Bell sa grupom engleskih astronoma na čelu sa Anthony Hewishom, detektovala je periodičan signal u radio području elektromagnetnog spektra. Primetivši pravilnost ovih signala - jednakost intervala u kojima su se pojavljivali - astronomi su došli do pretpostavke da se radi o signalima neke vanzemaljske civilizacije koja pokušava da stupi u kontakt sa nama, pa su ove izvore nazvali LGM (Little Green Men - mali zeleni ljudi). Potom je usledilo otkriće većeg broja sličnih signala sa raznih mesta na nebu, što je opovrglo teoriju o vanzemaljcima. Nova pretpostavka je bila da se radi o nekim prirodnim izvorima. Pitanje koje se sada nameće tiče se prirode tela koje može da pulsira jednom u 1.3 sekunde.

Izvori

Promenljiva zvezda kao izvor signala definitivno otpada, jer su promene previše nagle i brze da bi se mogle pripisati objektu koji doživljava promene sjaja usled termonuklearnih reakcija koje se odigravaju u njemu. Sve je ukazivalo na to da do pulsiranja dolazi usled rotacije. Međutim, bilo je očigledno da se radi o objektima sa malom zapreminom koja bi im omogućila toliko veliku brzinu rotacije. Zvezde veličine Sunca ne mogu da postignu takve brzine rotacije - objekti bi morali da imaju prečnik od oko 10 kilometara. Naravno, neutronske zvezde su se po svim karakteristikama uklapale u profil izvora pulseva. U prilog ovoj teoriji išlo je i otkriće pulsara u središtu Rak magline u sazvežđu Bika. Naime, s obzirom na to da je Rak maglina ostatak supernove koju su Kinezi posmatrali 1054. godine, to se uklapa i u pretpostavku da neutronske zvezde nastaju nakon eksplozija supernovi (inače, pulsar u Rak maglini je do skora bio smatran najbržim pulsarem, no o tome će biti reči u sledećem broju u članku "Dvojni pulsari").

 

Fizičke karakteristike

Kada zvezda od 1.4 do 3 mase Sunca okonča svoj evolutivni tok u eksploziji supernove, dolazi do sažimanja jezgra pri čemu se spajaju protoni i elektroni i formiraju neutrone. Kada odbaci svoj spoljašnji omotač, zvezda gubi najveći deo svoje zapremine, pa tako, u skladu sa zakonom održanja momenta impulsa (po kojem se gubitkom zapremine uvećava brzina rotacije), ona počinje brže da rotira oko svoje ose. Velika gustina i velika brzina rotacije neutronske zvezde, omogućuju veliku rotacionu energiju i magnetno polje koje tu energiju transformiše u elektromagnetnu energiju, što uzrokuje emisiju radio talasa iz polova magnetosfere. Ono što nam omogućuje detekciju pulsara jeste inklinacija magnetosfere neutronske zvezde u odnosu na osu rotacije. Ako se Zemlja nalazi u tom snopu radio talasa, detektujemo radio signal. Da bi do ovoga uopšte došlo, pulsar mora da se nalazi u povoljnoj poziciji u odnosu na Zemlju, odnosno, Zemlja mora da se nalazi u jednoj tački konusa koji opisuje snop radio talasa pri rotaciji pulsara. Zato se smatra da je najveći broj pulsara u našoj Galaksiji neotkriven.

 

VRH